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We study the surface adsorption and collapse transition of a flexible self-attracting self-avoiding poly-
mer chain on truncated 4- and 5-simplex lattices using real-space renormalization-group techniques. We
find phase diagrams that exhibit many different universality domains of critical behavior. In the
desorbed ordinary bulk regime, the polymer undergoes a collapse transition from a swollen to a
compact-globule phase on a 4-simplex lattice, but not on a 5-simplex lattice, where it always remains in
the swollen state. In the adsorbed region, on a 4-simplex lattice, the polymer remains in the swollen
state with a critical behavior characterized by that of a 3-simplex lattice, whereas, on a S-simplex lattice,
it has both swollen- and compact-globule regions separated by a tricritical (0) line. The phase diagram
of a 4-simplex lattice has a pentacritical point which separates a region, where the point at which the ad-
sorbed (swollen) polymer coexists with both the desorbed polymer and desorbed globule is a tetracritical
point, from one in which it appears as the intersection of three lines of continuous transition. On a 5-
simplex lattice, the adsorbed phase 6 line bends in the neighborhood of the special adsorption tricritical
line and does not appear to meet it, even for a very large value of the monomer-monomer attraction.

PACS number(s): 64.60.Ak, 05.70.Fh, 64.60.Kw, 64.60.Fr

I. INTRODUCTION

The physical properties observable on a polymer chain
length are calculated as statistical averages over all possi-
ble configurations of the polymer and these
configurations are obtained by considering the chain as a
walk embedded in an appropriate lattice. Several lattice
models, such as random walk (RW), self-avoiding walk
(SAW) [1-3], true self-avoiding walk [4], self-attracting
self-avoiding walk (SASAW) [5,6], trails and their
silhouettes [7], etc., have been proposed to represent a
polymer chain in different regimes. For example, the
model of a SAW simulates a polymer chain in a good sol-
vent while the model of a SASAW represents a polymer
chain in a poor solvent that can undergo a collapse tran-
sition, where the chain contracts from an extended state
to a globule state when the temperature is lowered.

These lattice models have been the focus of much at-
tention in recent years because from a statistical-
mechanics viewpoint they serve as generic examples of
analyzing scaling and fractal properties [8—10]. In
critical-phenomena parlance, the infinite RW is
equivalent to a Gaussian system at its critical point with
the radius-of-gyration exponent v=14 independent of
space dimension d (of a Euclidean lattice). The SAW is a
critical O(n) model with n—0 component [2]. The
SASAW changes the behavior of the phase transition of
the SAW from second order to first order into a collapse
phase at low temperature [2]. At the intermediate tem-
perature (6 point) its behavior is described by a tricritical
point of O(n), n —0, spin system [2]. In this regime the
upper critical dimension changes from four to three with
the consequence that for d =3, v is equal to 1 plus a loga-
rithmic correction. The phase diagram for a SASAW
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model has been studied on both regular and fractal lat-
tices using a variety of methods [2,5-8].

Configurational properties of polymer chains interact-
ing with a surface may get strongly modified relative to
their bulk properties owing to a subtle competition be-
tween the gain of internal energy and the corresponding
loss of configurational entropy at the surface. The gen-
eral picture that has emerged from the theoretical [11,12]
and experimental [13,14] studies of the surface-
interacting polymer chains reveals that under certain
conditions, a polymer chain can form a self-similar ad-
sorbed layer near the wall with a decreasing density
profile at the critical temperature T,. The polymer sys-
tem undergoes a transition from a desorbed state to an
adsorbed state as the temperature is lowered. Using the
analogy between an adsorbed polymer chain and the
magnetic n—0 vector model with a free surface it has
been shown that the adsorption point T, corresponds to a
tricritical point and in its proximity a crossover regime is
observed. In particular the mean number of M mono-
mers at surface is shown to behave as

(r,— M4, T<T,
M~ {N¢ T=T,
(r—1,)7Y T>T,.

Here ¢ is the crossover exponent. The value of the ex-
ponent ¢ can be found exactly in two dimensions using
conformal invariance theory [15] and on fractal lattices
using real-space renormalization-group (RSRG) methods
[16,17].

A surface-interacting polymer chain in a poor solvent
is expected to exhibit a phase diagram characterized by
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many different universality domains of critical behavior.
The competition between solvent-induced monomer-
monomer attraction and the surface-monomer interac-
tion may lead to the possibility of the coexistence of
different regimes and multicritical behavior. Attempts
have been made to study such phase diagrams on Eu-
clidean lattices using RSRG and phenomenological re-
normalization methods [18]. However, as a rule these
models are not solvable analytically and numerical
methods are quite inefficient in the study of multicritical
phenomena. Recently, a transfer-matrix method has
been used to study the directed and isotropic [19,20]
SASAW models of polymer collapse and adsorption. The
simultaneous adsorption and collapse transitions which
take place at the so-called special (multicritical) 6 point
have been observed in both models in d =2. In the first
case the applicability of the model is, however, physically
limited while in the latter, size effects are seriously
hindering the possibility of locating and describing pre-
cisely the multicritical points.

Fractals which may be considered intermediate be-
tween regular and disorder lattice offer a class of system
where many nontrivial physical models can be treated ex-
actly. Aside from being interesting in their own right,
these results are often in qualitative (and some times even
quantitative) agreement with their counterparts for stan-
dard Euclidean lattices. The problem of simultaneous
adsorption and collapse of a linear polymer chain has re-
cently been studied on a three-dimensional (3D) Sierpin-
ski gasket by Bouchaud and Vannimenus (herein after re-
ferred to as BV) [16] and Orlandini et al. [20] using
RSRG method.

BV [16] considered a surface-interacting SASAW mod-
el and found a phase diagram which qualitatively agreed
with the one obtained by Veal, Yeomans, and Jug [19]
and the existence of multicritical special 8 point is
confirmed. Orlandini et al. [20], on the other hand,
modeled the polymer chain by a SASAW in the bulk and
by a trail silhouette on the surface. In their model, the
polymer in the bulk experiences self-attraction due to
nearest-neighbor interactions, while on the surface twice
visited sites are favored by a suitable fugacity. In their
phase diagram the desorbed phase has regions of swollen
and collapsed phases separated by a tricritical line and
the adsorbed region has the phases of swollen linear
chain, branched polymerlike phase and collapsed phase
separated by tricritical lines. Thus in the adsorbed region
two transitions are found to take place: the first one from
linear to branched polymer behavior is followed by a col-
lapse into compact-globule phase.

In this article we consider the problem of simultaneous
adsorption and the collapse of a linear polymer chain on
truncated n-simplex lattices, which provide a family of
fractals in which the fractal dimension can be varied to a
wide range while the spectral dimension is held almost
fixed. In previous papers [21] we have calculated, using
the exact renormalization-group transformation, the bulk
critical exponents v,a,y and the nature of tricritical
point (6 point) corresponding to the transition of col-
lapsed globule phase. In Sec. IT we first outline the main
features relevant to our present study of these fractal lat-

tices and also the outline of the general formulation of
the problem of a surface-interacting polymer chain. The
details of calculation of phase diagrams using a RSRG
transformation of the chain on truncated 4- and 5-
simplex lattices are given in Secs. III and IV, respective-
ly. The paper ends with a brief discussion given in Sec.
V.

II. SURFACE INTERACTING POLYMER CHAIN
ON A TRUNCATED n-SIMPLEX LATTICE

The truncated n-simplex lattice is defined recursively
[22]. The graph of the zeroth-order truncated n-simplex
lattice is a complete graph on (n +1) points. The graph
of the (r + 1)th-order lattice is obtained by replacing each
of the vertices by the rth-order graph by a complete
graph on n points. Each of the new n points is connected
to one of the lines leading to the original vertex. The
fractal and spectral dimensions of this lattice are respec-
tively given as
(b Inn.

= 21nn
d (b) —
In2 ’

T In(n+2)

The superscripts (b) and (s) (see below) stand for the bulk
and surface, respectively. The following features of this
family of lattices are of particular interest to us.

(i) The surface of a truncated n-simplex lattice is a
truncated (n —1)-simplex lattice with fractal d}® and
spectral d ) dimensions given by Eq. (2.1) where n is re-
placed by (n —1).

(ii) The odd simplex lattices (to be more precise, the
lattices with » =3 and 5 [21]) do not appear to have col-
lapse transition for a SASAW model. The polymer chain
remains in a swollen state for all values of monomer-
monomer attraction on these lattices. Thus for any value
of n the collapse transition can take place either in the
bulk or in the surface, but not in both.

These features of the truncated n-simplex lattices make
it an interesting system for the study of adsorption and
collapse transition of a linear polymer chain.

To perform a RSRG calculation on a polymer chain
interacting with a surface, we study how the characteris-
tic quantities describing a SASAW change upon repeated
length rescaling of the lattice. When these quantities
remain invariant, the chain is ‘“self-similar” on all length
scales and this is a “fixed point” of the rescaling transfor-
mation. The chain and its behavior under rescaling is de-
scribed with the help of certain parameters. The bulk
critical exponents are usually calculated using only one
parameter, which represents fugacity per monomer of the
polymer chain [3,21]. Here we introduce three more pa-
rameters describing the strengths of the nearest-neighbor
monomer interaction, the interaction of a monomer in
the surface layer and in the adjoint one [16,17].

We consider a polymer chain situated on the truncated
n-simplex lattice and make one surface of it attractive.
We call this surface a (impenetrable) wall. To each N-
step walk having N, steps along the wall, N, steps lying
in the surface layer adjacent to the wall, and with N,
number of nearest neighbors, we assign the weight

N u ™. Here x is fugacity associated with each

X ,wNSt
step of the walk and w =exp(—E,/KyzT) and

(2.1)

c m
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t =exp(—E_/KyT) are Boltzmann factors corresponding
to surface energy E; denoting the interaction of a mono-
mer with the wall and E_ the interaction energy of a
monomer with the adjacent layer. u represents
monomer-monomer (attractive) interaction strength and
is related to the temperature by u =exp(+E,, /KyT),
E,, >0 being the attractive energy associated with a pair
of nearest-neighbor bonds. We restrict the attractive in-
teraction to bonds within a first-order unit of the fractal
lattice [6]. The global generating function for the prob-
lem we want to study can be written as

N. N N
G(x,u,w,t)= 3 xNw ey
all walks

N,N,,N_,N,,

C(N,N,,N,,N, )xMw"st ey

(2.2)

where C(n,N;,N_,N,,) represents the total number of
configurations of all walks.

For finitely ramified fractals it has been shown [21]
that the relevant generating functions can be expressed in
terms of a finite number of restricted partition functions.
These partition functions are defined recursively as a
weighted sum over all configurations for a given stage of
the iterative construction of the fractal lattice. The re-
cursions express the restricted functions for the
(r +1)th-order lattice in terms of those of the rth-
generation one. The variables in these equations are just
the partial generating functions corresponding to
different polymer configurations for a given size of the
fractal lattice. Linearizing the recursions near the non-
trivial fixed points, the ones reached by the system de-
pending on the initial conditions, we can find the eigen-
values of the transformation matrix which give the
characteristic exponents of the system.

III. THE TRUNCATED 4-SIMPLEX LATTICE

The basic geometrical unit of construction of a truncat-
ed 4-simplex lattice is a tetrahedron with 4-corner ver-
tices and bonds between every pair of vertices. Each ver-
tex connected through a direct bond is termed a nearest
neighbor. The tetrahedron of first and (» + 1)th order are
shown in Fig. 1. The shaded regions represent the sur-
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FIG. 1. Graphical representation of a truncated 4-simplex
lattice of first and (7 + 1)th order. The shaded regions represent
the adsorbing surface. The nearest-neighbor bonds on the sur-
face are shown by dashed lines while those of the bulk are
shown by full lines.

face. The nearest-neighbor bonds on the surface are
shown by dashed lines while those of the bulk are shown
by full lines. The surface of the 4-simplex lattice is a
truncated 3-simplex lattice. Note that the truncated 4-
simplex lattice belongs to the same universality class as
the 3D Sierpinski gasket studied by BV [16]. The bulk
critical behavior including the 6 point for the SASAW
model has been studied by Dhar and Vannimenus [6].

The restricted partition functions of our interest are
shown in Fig. 2 and corresponding recursion relations are
[6,16]

A, =A*+24°+24*+44°B+647B*, (3.1)
B,,,=A*+443B +22B*, 3.2)
S,+1%S2+S3+A(C2+2czs+4CSE +6SE?), (3.3)
C,,.,=AC(1+2S5 +2S?)+2A4S*E +C*2C+6E)B ,
(3.4)
and
E, = AS*C+3E)+(C*+22E°)B . (3.5)

The subscript r has been dropped out from the right-hand
side of above equations. Note that the Egs. (3.1) and (3.2)
correspond to the polymer chain in bulk and have been
studied by Dhar [3] and Dhar and Vannimenus [6] in de-
tail. They are decoupled from the surface and remain so
under iteration. The initial weight of these functions are

A, =x2+2x%u +2x*u?, (3.6a)
B,=x%u*, (3.6b)
S =xw?+x3w3u +x3¢%u +2x*wt?u? (3.6¢)
C,=x2t +2x3wtu +2x*wu’ , (3.6d)
E,=x*wtu* . (3.6e)

Br

FIG. 2. Diagrammatic representation of the restricted parti-
tion functions for the rth-order tetrahedron. The internal struc-
ture of the tetrahedron is not shown. Only the corner vertices
and the end points of the walks are shown. Out of five dia-
grams, two (A4 and B) represent the bulk generating functions
for the polymer chain and the remaining three (S, C, and E)
represent the surface functions.
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In writing Egs. (3.6a)—(3.6e) we associated weights x,
xw, and xt, respectively, to each step in the bulk, wall,
and the surface adjacent to the wall, and u to each pair of
nearest neighbors. More general or complicated initial
conditions could be considered by allowing all or some of
the interactions to have a different form, but they would
not change the qualitative nature of the phase diagram.
We, however, note that the initial weight taken by BV for
S differs from the one given above by Eq. (3.6¢c). As a re-
sult, the phase diagram found by us has certain additional
features not reported by BV [16].

Here our main emphasis is to explore the behavior of
the transitions around special line, i.e., w =w*(¢t,u) for
different values of z. We show that the parameter ¢ plays
a crucial role in determining the multicritical behavior of
the polymer chain. To make the analysis more simple,
we divide the parameter space into three regions depend-
ing on the values of surface attraction parameter w.

A. Desorbed phase

For all values of w <w*(¢,u) the polymer chain lies in
the bulk. The following features which characterize a
bulk phase are found.

(1) For weak monomer-monomer interaction, i.e.,
u<ug (=3.316074) the fixed point is found to be
(A*,B*,S*,C*,E*)=(0.4294,0.0499,0,0,0). The lin-
earization of the relevant equations given only one eigen-
value A, =2.7965 greater than one. The radius of gyra-
tion exponent found with this eigenvector is equal to
0.6740, a value already known for the 4-simplex lattice.

(2) At u =u4=3.316074 we have O-chain behavior for
the polymer in the bulk. The fixed point which
represents this behavior is (A*,B*,S*,C*,E*)
=(4,4,0,0,0). The linearized equations around this fixed
point give two eigenvalues greater than one; A,;=3.7037
and A,,=2.2222. With these eigenvalues we find the crit-
ical exponents v,=0.5293, ¢.=0.6098, and a=0.3602.
These values characterize the tricritical nature of the 6
point.

(3) If we further increase the strength of the monomer
interaction, i.e., u >ugy, the polymer is found in a col-
lapsed (compact globular) phase in which the monomer
density per site is finite. This phase is represented by a
fixed point (A4*,B*,S* C* E*)=(0,0.3568,0,0,0).
Linearization around this fixed point gives only one ei-
genvalue greater than omne. This eigenvalue which is
equal to 4.0 leads to v, =1, corresponding to collapsed
phase.

In the phase diagram plotted in Fig. 3 in which we plot
w as a function of u, the 6 line is found at
u =ug(=3.316074) is shown by dashed line. This line
separates the bulk swollen and collapsed phases and ter-
minates at the surface adsorption line w =w*(t,u). As
discussed below, the line w =w™*(u,t) separates the bulk
from the absorbed phase. Note that below this line the
desorbed phase is not affected by the presence of the sur-
face attraction, except for the 6 point turning into a 6
line and the critical lines corresponding to swollen and
collapsed phases into respective regions.

B. Adsorbed phase

When w >w*(u,t) the polymer is found in adsorbed
phase. The fixed point which represents this state is
(A*,B*,S*,C*,E*) =(0,0,0.61803,0,0). The linear-
ized equations about this fixed point lead to eigenvalue
A, =2.3819, which gives v, =0.7986, a value equal to the

Z.AOJ
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FIG. 3. (a) The w-u phase diagram at ¢ =0.2 for the truncat-
ed 4-simplex lattice. Regions marked by A4S, DS, and DC
represent, respectively, the adsorbed polymer in swollen state,
desorbed polymer in swollen, and collapsed (globular) state.
The dashed line which separates the bulk swollen and collapsed
state of the polymer is the 6 line. The special adsorption line is
indicated by full line and part of it by dotted line. The point
where 6 line meets with the adsorption line is a multicritical
point. The dotted part of the adsorption line indicates the re-
gion of the coexistence of adsorbed SAW and the (bulk) globule
phase. (b) The w-u phase diagram at ¢ =0.5 for the truncated
4-simplex lattice. Other notations have the same meanings as in
(a).
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radius of gyration exponent for a SAW on a 3-simplex
lattice.

C. Special adsorption line

When w =w*(u,t) the polymer is on an adsorption
special line. Our aim here is to study the different regions
of this line which characterize different multicritical
behaviors as a function of # and ¢. Note that the parame-
ters u and t measure, respectively, the strengths of
nearest-neighbor monomer interaction and the repulsive
strength of the adjacent layer to the wall.

(4) For weak monomer interaction u <u,, the
w=w*(u,t) line corresponds to a fixed point
(A*,B*,S*,C*,E*)=(0.4294, 0.04998,0.4294,0.4294,
0.049 98) for all values of ¢ lying between O and 1. The
linearization of the equations about this fixed point gives
two eigenvalues, A, =2.7965 (corresponding to swollen
bulk state) and A,=2.1583. Thus the point is the expect-
ed symmetrical special point which describes the polymer
at the unbinding transition with v=v, and the crossover
exponent ¢, =0.7481 and a=0.6653. In the w —u plane,
the phase diagram shown in Figs. 3 and 4, the line
w =w*(u,t) corresponding to this point is shown by a
full line.

(5) As noted above, the collapse transition in the bulk
solution occurs when the initial conditions are such that
A*=B*=1. Solving Egs. (3.1), (3.2), (3.6a), and (3.6b)
we find that these values are found for x,=0.229 157. ..
and u4=3.316074. . .. Using these values of x =x,4 and
u =ug in the recursion relations of Egs. (3.1)-(3.5) we lo-
cated the other fixed points which lie on the line
w =w *(u,t) and are multicritical.

2.20 /— £20.2
1.80 e ¢ 0.3
/ 20.34115
© =0.4
1.40-] /¥“ —— =05
e X
1.00 T 7 T T y
1.00 2.00 3.00 400 5.00 6.00

u

FIG. 4. Special adsorption lines are shown in w-u plane for
several values of 7. The multicritical (tetracritical) point is
shown by a full circle. The region (indicated by dotted line) of
coexistence of the adsorbed SAW and the (bulk) globule phase is
shown to exist for ¢t <t*=0.34115.... At ¢=t* the multicrit-
ical point shown by the cross represents a special symmetric
desorbed and collapsed fixed point and is of higher order (penta-
critical) than at other values of ¢.

(i) When w =w™*(u =u,,t) and ¢t <t* (=0.34115...)
the iterations of the equations lead to a fixed point
(4,4,0.4477,0.4528,0.0815). The linearized equations
have three repulsive directions with eigenvalues

Asm=2.2715, A, =3.7037, A,y=2.2222 .

Note that the last two values are the same as those found
for the bulk 0 point [see (2) above].

(i) For w=w™*(uy,t) where t >t*, the fixed point

1,4,0,0,0.3693) is found. Again we find three eigenval-
ues greater than one, where Ag,=3 and the other two A,
and A, are the same as those given above.

(i) For w=w™*(uyt*) we find the symmetric
“desorbed and collapsed” fixed point, i.e., (1,1,1,1,1).
This point has been found to have four eigenvalues
greater than one. These values are

Aem1=2.7628, Agy,=1.4964 ,

and the other two are A,; and A,, given above.

All these points are multicritical special 6 points and
are found at different values of ¢z. In Fig. 5 we plot
w*(uy,t) as a function of t. The line is a multicritical line
having a higher-order multicritical point at  =0.341 15.

(6) For u > u4 we have the following situations.

(@) If t <t*=0.34115... and u4 <u(t) we find the un-
binding transition takes place between an adsorbed phase
of a SAW and the free collapsed globule phase at
w =w*(u,t). The fixed point that corresponds to this
transition is (0,0.3568,0.61803,0,0). BV [16] have re-
ported this feature and have attributed it to the coex-
istence between the adsorbed SAW and the globule
phase.

(i) For t<t* and u >u.(t) the transition at
w=w*(u,t) is governed by the fixed point
(0,0.3568,0,0,0.3568). There are two relevant eigenval-
ues associated with this point. They are A;=4.0 and
A,=3.0. Note that A, corresponds to the bulk collapse
phase and A, =Ag, found in (5 ii) above.

(iii) For ¢t >¢* we do not find the behavior given in (i).

2.007
1.80
MC
1.60
1.40

1.20~

1.00

0.80 1 T T T T )
0.00 0.20 0.40 060 0.80 1.00 1.20

FIG. 5. Critical values of w as a function of ¢ corresponding
to the multicritical points. The point MC, which is a pentacriti-
cal point, separates the two tetracritical lines.
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Instead, for the whole range of u >u, we find the
behavior given in (ii).

IV. THE TRUNCATED 5-SIMPLEX LATTICE

The basic geometrical unit of the construction of a
truncated S-simplex lattice is hypertetrahedron of five
corner vertices and bonds between every pair of vertices,
termed as nearest neighbor [21]. The hypertetrahedron
|

A, ;= A’ +3A4°+6A4°+64°+18A4°B*+96 4°B>+12A4°B+78 A3B*+304*B +132AB*+132B° ,
B, ,=A*+24°4+134*B+44°B +324°B>+884?B>+22B*+2204B*+186B° ,

of first and (r + 1)th order are shown in Fig. 6. The shad-
ed regions represent the surface and nearest-neighbor
bonds on the surface are shown by dashed lines while
those of the bulk are shown by full lines. It is equivalent
to a 4D Sierpinski gasket whose surface is a 3D Sierpin-
ski gasket. The restricted partition functions relevant to
our present study are shown in Fig. 7 and their corre-
sponding recursion relations are given below:

S, 1=132E*B +44 AE*F?>+88CE>B +32C?E?B+C?A4 +12C3EB +2C*B + 12S AE*>+ 64S AE*F +8SC AE

+24SCAEF +4SC? A +4SC?* AF +S*+6S*F*+42S? AE?>+24S?CAE +6S2C? A +2S*+4S°F+28*4,

C, . 1=132E°*FB +CA +18C*EB +6C*B +6C>FB + 132SE*B +96SCE*B +3SC A +54SC?EB +12SC>B

+6S?AE +18S?AEF +65%CA +6S>CAF +12S3AE +6S3°CA4

E,, ,=22E°B +186E*FB +22 AEF*+66CE*FB +C*B +132SE>B +22S AEF?+ 66SCE>B + 16SC2EB

+3SC3B +3S?AE +16S*AEF +S>CA+3S*CAF +7S*AE +253C4
+1=22F*+186E*B + 132 AE?F>+88CE>B +C*B +88S AE’F +32S*AE?+12S>CAE +2S?C? 4 +4S°F +5* .

F,

r

We have dropped the subscript 7 from the right-hand side
of the equations.

Equations (4.1) and (4.2) correspond to the polymer
chain in the bulk and have already been studied by us
[21] in detail. They are decoupled from the surface and
remain so under iteration. The starting weights of these
equations are

A1=x2+3x3u +6x*ud+6x3u®, (4.7a)
B, =x*u*42x%", (4.7b)
S, =x2w?+2x3w3u +x3t%u +ax*wt’u’

+2x 4w+ 6xwiu’ (4.7¢c)
C,=x2t+3x3wtu +6x *wtu+6x°w3tu® (4.7d)
E,=x*w?tu*+2xw3tu’ , (4.7e)
Fi=x*w*u*+2x%w?t’ . (4.7)

In contrast to the case of 4-simplex lattice, the phase
diagram for S5-simplex lattice remains qualitatively unal-
tered due to variation in the value of ¢z. All the results re-
ported here are, therefore, for only one value of ¢, i.e.,
t =0.5. Once again our main motivation is to explore the
multicritical behavior of the polymer chain around the
special (adsorption) line w =w*(u,t). For simplicity, we
divide the parameter space into three regions depending
on the value of surface attraction parameter.

A. Desorbed phase

When w <w*(u,t), the polymer remains in desorbed
phase. The fixed point (A*,B* S*,C*,E* F*)
=(0.3265,0.0279,0,0,0,0) corresponds to bulk state with

(4.6)

[
v=0.6049 and a=0.5934 as reported earlier [21]. This
fixed point is reached when w <w*(u,?) at x =x_(u). In
Fig. 8 we plot x_as a function of # and note that the poly-
mer chain is in swollen state for all values of « [21].

B. Special adsorption line

At w=w*(u,t) and x=x,(u) the fixed point
(0.3265,0.0279,0.3265,0.3265,0.0279,0.0279) is reached.
The linearization of equations about this fixed point gives
two eigenvalues greater than one. The point is identified
as the tricritical point of adsorption transition. The two
eigenvalues are

Ap=3.1319, Agr=2.5858 .

1st Order

(r+1)th Order

FIG. 6. Graphical representation of a truncated S-simplex
lattice of first and (» +1)th order. The shaded regions represent
the adsorbing surface. The nearest-neighbor bonds on the sur-
face are shown by dashed lines while those of the bulk are
shown by full lines.
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{

B

FIG. 7. Diagrammatic representation of the restricted parti-
tion functions for the rth-order hypertetrahedron. Out of six di-
agrams, two (A4 and B) represent the bulk generating functions
for the polymer chain and the others (C, S, E, and F) represent
the surface functions.

The crossover exponent

_ InAgp

= InA,

=0.8321 .

In Fig. 9, in which we have plotted x, as a function of
w for different u, the tricritical point forms a line shown
by the dashed line. We note that for each u we have a
value of w =w*(u,t) such that for w >w*(u,t) the ad-
sorbed phase (discussed below) is found to exist for
x <x.(u). For a given u,w <w*(u), and x =x_, part of
the curve represents the desorbed phase and the point
w=w*(u,t) and x =x_(u) is a tricritical point. We also
note the existence of another curve indicated by the dot-
ted line in Fig. 9. This is a tricritical line of surface col-
lapse transition.

0.401
0.30~
X
0.20
0.10
\-\\NM
000 . | [ : :
1.00 3.00 5.00 7.00 3.00 11.00

FIG. 8. Critical fugacity x for a linear polymer chain on the
truncated S-simplex lattice as a function of the monomer-
monomer attraction parameter u.

[>]

C. Adsorbed phase

When w >w*(u,t) the polymer chain is in adsorbed
phase. As shown in Fig. 9, the adsorbed region of the
phase diagram on x-w plane has the swollen and col-
lapsed globule phases separated by the 6 line. For
w>>w*(u,t) the @ line is found at u =u,=3.316074.
The adsorbed phase for u <ug is in a swollen state and
for u >u, it is in the collapsed globule phase. These re-
sults are in agreement with the bulk region of the phase
diagram of the 4-simplex lattice. However, in contrast to
the bulk 4-simplex lattice result, the 6 line of the ad-
sorbed phase does not meet the special adsorption line at
u =ugy. Our calculation indicates that as w >w*(u,t),
the 6 line bends and approaches very slowly the line
w=w*(u,t) as the value of u is increased. Even for
u >200 we find that the two lines have not merged.
However, the separation between the two at such a large
value of u is very small and may not be detectable by any
experiment. This feature of the phase diagram is also
clear in Fig. 10 in which we plot the two tricritical lines
on u-w plane. The region of coexistence of three phases

0.18

0.164

0.14

0.12

0.10—

0.08+

0.06

0.04-

0.02-

0.00 T | T
1.00 1.50 2.00 250

w

FIG. 9. The x-w phase diagram at ¢ =0.5 for the truncated
5-simplex lattice. The special adsorption line is indicated by the
long-dashed line and the 6 line which separate the adsorbed po-
lymer chain in swollen (AS) and collapsed (AC) (globular)
phases are indicated by the short-dashed line. Full lines marked
(i), (i), and (iii) represent the critical value of the fugacity for
the polymer chain for different values of u =3.0, 4.0, and
6.3885, respectively. Note that the value of x remains constant
in the desorbed region and decreases as w is increased in the ad-
sorbed region for each u. The tricritical point of adsorption is
indicated by full circle. The insertion on the top right-hand side
of the figure gives on a magnified scale the position of the two
tricritical lines.
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FIG. 10. The w-u phase diagram at ¢t =0.5 for the truncated
5-simplex lattice. The two tricritical lines are indicated by
long-dashed (adsorption line) and short-dashed (6 line) lines.
These two lines do not appear to meet at any finite value of u.

of the polymer chain, viz. the bulk swollen, the adsorbed
swollen, and the collapsed globule phases are separated
by these lines. We find that the line w =w *(u,t) at small
u rises and attains a maxima at around u =2.3 for
t =0.5. For u >ug, the line w =w™*(u,t) becomes almost
independent of u.

V. DISCUSSIONS

The truncated 4- and 5-simplex lattices considered here
exhibit contrasting behaviors. The collapsed globule
phase transition is found to take place on a 4-simplex lat-
tice while the 5-simplex lattice does not show this transi-
tion. This is because the geometrical nature of the 5-
simplex lattice is such that at least one vertex of each
first-order unit of the lattice remains unoccupied. Since
the surface of the 5-simplex lattice is a truncated 4-
simplex lattice, the collapse transition will take place in
adsorbed phase of this lattice. On the other hand, the
surface of the 4-simplex lattice is a truncated 3-simplex
lattice; this transition cannot take place in the adsorbed
phase. These features of the two lattices are obvious in
the phase diagrams plotted above.

In the w-u phase diagram of a surface interacting
SASAW models on 4-simplex lattice plotted in Figs. 3
and 4, the adsorbed phase is always in a swollen state
with a radius of gyration exponent equal to that of a trun-
cated 3-simplex lattice. The bulk phase has two regions;
the region of swollen state separated from the collapsed
globule state [by a tricritical line (0 line)]. The 6 line is at
u =u4=3.316074 and runs parallel to the w axis, i.e.,
remains unaffected due to the surface interaction. The
point where it meets the adsorption line w =w*(t,u) is a
multicritical point. This multicritical point is character-
ized by three different fixed points depending on the
values of ¢ which measures the repulsive strength of the
adjacent layer to the wall. The nature of the w =w*(u,t)
line near this multicritical point also depends on the
value of ¢.

When t <t*=0.341 15, the portion of line w =w *(u,t)
which separates bulk swollen from the adsorbed phase is
almost linear with positive slope. At the multicritical
(tetracritical) point the line rises rather sharply. In a re-
gion specified by uy<u <u,, where the value of u, de-
pends on ¢, we have the coexistence between the adsorbed
SAW and the collapsed globule phase. This region is
shown in Figs. 3 and 4 by a dotted line. For u >u_(¢) the
line w =w*(u,t) becomes almost flat. The value of u ()
decreases as ¢ is increased and becomes equal to that of
ug at t =t*=0.34115. At t =t* the multicritical point
becomes a symmetric ‘“desorbed and collapsed” penta-
critical point having four eigenvalues greater than one.

For ¢t >t* the line w =w*(u,t) has a different shape
than for ¢ <t*. The line appears to have a maximum at
u Suy. It drops rather sharply [see Fig. 3(b) for ¢ =0.5]
in contrast to the case of ¢ <t* at the multicritical point.
The multicritical (tetracritical) point in this region is de-
scribed by a different fixed point. Further, in contrast to
the case of ¢ <t*, the line w=w*(u,t) for u >u,
separating the bulk collapsed and adsorbed phases shows
the decreasing tendency as u is increased. In Fig. 5 we
display on the w-t plane the two tetracritical lines
separated by a pentacritical point. This pentacritical
point separates a region where the point in which the ad-
sorbed (swollen) polymer coexists with both the desorbed
polymer and the desorbed globule is a tetracritical point
from one in which it appears as the intersection of three
lines of a continuous transition.

The behavior of special adsorption line described above
can be understood from contributions of different coexist-
ing polymer configurations (see Fig. 2) to the bulk and
surface free energies. When both the adsorbed and
desorbed phases are in swollen state, the adsorption line
has same nature in the w-u plane for all values of ¢, al-
though the slope of the line decreases as ¢ is increased.
At ¢t =1 the adsorption takes place at w =1 and the ad-
sorption line in the w-u plane has a zero slope. This is
due to the fact that at t =1 and w =1 the surface is just a
part of the bulk lattice. As ¢ is increased, w has to be in-
creased to have adsorption, and since # in such a situa-
tion favors the bulk phase [owing to presence of some B
configuration (Fig. 2)] we have to increase the surface in-
teraction to counteract this tendency. In the other ex-
treme, i.e., when u >>u,, the adsorption line has a zero
slope. Here the coexisting polymer configurations are
those given by B and E in Fig. 2. The free energies due to
these two configurations balance each other at all u
values and therefore the line remains insensitive to the
value of u. It is only in the neighborhood of the special 6
point that the line becomes sensitive to the value of ¢ and
u.

When ¢t <t*, the surface layer is strongly repulsive and
prohibits the occurrence of the E configuration in the
neighborhood of the 6 point. The adsorbed state is still
given by the configuration S, although the bulk is in the
globular compact phase. Thus to balance the free energy
w has to be increased. However, at t >t* the surface is
only moderately repulsive and therefore at certain value
of w the polymer configuration given by E is formed.
This lower value of w is needed to balance the bulk free
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energy at the special @ point. The formation of B and E
configurations near the 0 point gives rise to pretransition-
al effects [shown in Figs. 3(b) and 4] for ¢ > ¢*.

A casual look at Fig. 3(b) and 4 may give the impres-
sion of the existence of a reentrant adsorbed phase as u is
increased. One should, however, realize that these figures
are merely a projection on the w-u plane of three-
dimensional figures in which the third dimension is given
by x. BV [16] have reported the phase diagram given in
Fig. 3(a). Because of the initial weights given to different
chain configurations, they did not find the other features
of the phase diagram.

The phase diagram on the 5-simplex lattice given by
Fig. 10 has features which differ from those of the 4-
simplex lattice. As already pointed out, the whole bulk
region of the phase diagram is in a swollen state. The ad-
sorbed region has swollen and collapsed globule phases
separated by a 0 line shown by a dashed curve. This line
does not meet the adsorption tricritical line even for a
very large value of u. Since the special adsorption line is
described by only one fixed point, the parameter ¢ has no
qualitative effect on the phase diagram.

However, if we assume that a polymer chain is at criti-
cality for a given x, and u in bulk and we put
A*=0.3265... and B*=0.0279. .. in other recursions
and then iterate the system, the situation and correspond-
ing phase diagram change drastically. Here we will con-
centrate ourselves once again on the adsorption special
line and its neighborhood. Our findings are as follows.

(i) At w =w*(t,u), x =x.(u), and u <u,=6.3885, the
fixed point (given in Sec. IV B) is found and the charac-
teristic exponents remain the same.

(ii) A fixed point (A*,B*,S*,C*,E*,F*)
=(0.3265,0.0279,0,0,0,0.3568) is reached at
w=w*(t,u), x =x.(u), and u >u,=6.3885. This im-
plies the coexistence with the bulk swollen and the sur-
face collapsed. Linearization around the fixed point
yields two eigenvalues greater than one, i.e., A;=3.1319
and Agy=4, which gives the crossover exponent

¢=0.8235.
(iii) When w =w*=1.4929. . ., x =x_(u)=0.4744. . .,
and u =u,=6.3885... the fixed point (A* B*,

S*, C*,E*,F*)=(0.3265,0.0279,0.2823,0.1686,0.0521,
0.3327) is achieved. Linearization around the fixed point
gives three eigenvalues greater than one. We identify it
as the multicritical point where three phases become
identical. The eigenvalues are

A =3.1319, Agy=3.7370, Agyp=2.2308 .

It should be noted that the last two eigenvalues are very
close to the eigenvalues discussed in the 4-simplex lattice
at the 6 point. This indicates that the adsorbed phase tri-
critical line (corresponding to collapse transition) seems
to meet at this point. However, as discussed in Sec. IV,
the fluctuations may not allow this to happen.
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